PS Algorithms and Data Structures 2024

Task sheet 1

Task 1

It is given an array *A* of natural numbers. Design an algorithm in pseudo-code that calculates the mean value of all numbers contained in *A*. What is the asymptotic running time of your algorithm?

Task 2

Sort the following expressions according to their asymptotic growth. A sorting $f_1, f_2, f_3, ...$ is to be created so that $f_i = O(f_{i-1})$. Also check whether there are Θ equivalences in this sorting!

• $2^{\log n}$	• 4 ^{log n}	• $n \log \log 2^n$
• $n \log \log n$	• 2^{n+1}	• log <i>n</i>
• <i>n</i> ²	• $2^{\log \log n}$	• n ^{0,001}
• $n \log n$	• log ₁₀ <i>n</i>	• $\log^{2024} n$

We use the convention of writing the logarithm to the base 2 as 'log', i.e., without a base.

Task 3

Prove or disprove:

•
$$f(n) = \Omega(f(n))$$

- $f(n) = \Omega(g(n)) \Longrightarrow g(n) = \Omega(f(n))$
- $f(n) = \Omega(g(n)) \land g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$