PS Algorithms and Data Structures 2024

Task sheet 3

Task 7

Let $A[1, \ldots, n]$ be an array with n numbers. Formulate a recursive divide and conquer algorithm in pseudocode to calculate the maximum of the values in the array A.

Task 8

Formulate an algorithm in pseudocode that determines the maximum number of times the number s appears consecutively in the array $A[1, \ldots, n]$.

- The algorithm should have a runtime of $O(n)$.
- Specify a suitable loop invariant to show that the algorithm is correct.

The following examples illustrate how the algorithm works:

Input	Output
$A=[3,7,2,2,2,6,1,2]$ und $s=2$	3
$A=[3,7,2,2,2,6,1,2]$ und $s=7$	1
$A=[3,7,2,2,2,6,1,2]$ und $s=5$	0

Task 9

Consider the following pseudo code, which describes a so-called linear search for the element s in the array A.

```
Linear-Search \((A, s)\)
    for \(i=1\) to \(A\).length
        if \(A[i]=s\) return true
    return false
```

What is the expected number of elements of A that are checked when searching for s ? What is the maximum number of such checks?

Answer each of these questions using the following assumptions about the position of s.

1. The element s is located exactly once in the array A. The exact position of s in A is random and uniformly distributed (over $\{1,2,3, \ldots, A$.length $\}$).
2. The element s is not contained in A.
